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Abstract

Excitatory pyramidal cells and inhibitory interneurons expressing somatostatin (SST),

parvalbumin (PV), and vasoactive intestinal peptide (VIP) form a canonical microcircuit

across cortical layers 2 and 3 (L2/3). Computational modelling techniques are instrumental

in unravelling the distinct functions and interactions amongst the neuron populations of this

microcircuit, both under healthy and pathological conditions. Past research suggesting

reduced inhibition by somatostatin-expressing interneurons plays a key role in altered

inhibition associated with depression in humans has led to the creation of a robust

multi-compartmental model of this L2/3 microcircuit, generated by integration of human

cellular, circuit and gene expression data. However, simulations using this complex

multicompartmental model are both lengthy and computationally expensive. Here, we

attempt to provide a more lightweight and abstract alternative to this model. We alter an

existing rate-based model of this cortical microcircuit, tuned using mouse V1 data, to

reproduce the high level population firing rate activity of the multi-compartmental model as

closely as possible. We recreate both models in the intermediate model description

language NeuroML2 and adjust the rate-based model to replicate the behaviour of the

multi-compartmental human model. When running simulations on the adjusted rate-based

model, we observe an acceptable reduction in accuracy when compared to simulations run

using the multicompartmental model. Hence, this rate-based model provides a lightweight

and rapid alternative that successfully mimics its multi-compartmental counterpart to a

sufficient extent. This allows for fast simulations of the L2/3 cortical microcircuit without

requiring substantial computational resources, at the expense of a level of accuracy. As

such, our model provides a more accessible and transparent alternative, thereby facilitating

future investigations into the complex functions and behaviours of the human circuitry

behind it.
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Introduction

Treatment-resistant major depressive disorder, commonly known as depression, is

characterised by dysregulation and dysfunction of cortical circuits involved in mood

regulation. Altered cortical inhibition is implicated in a variety of brain disorders, depression

among them. Recent research specifically identified reduced dendritic inhibition from

somatostatin (SST) interneurons as a key component in this altered inhibition (Yao, et al.,

2022).

A recent study by Yao et al (2022) was able to not only establish this link mechanistically but

also produce a powerful computational model of the key L2/3 cortical circuit involved in

this. The microcircuit in question consists of excitatory pyramidal cells and GABAergic

parvalbumin (PV), somatostatin (SST), and vasoactive intestinal peptide (VIP) expressing

interneurons (three major non-overlapping classes of interneurons making up more than

80% of cortical GABAergic interneurons (Rudy, et al., 2011)).

The original model developed by Yao et al is a complex, sophisticated multicompartmental

model, consisting of 1000 neurons (80% pyramidal, 5% PV, 7% SST and 8% VIP).

Multicompartmental models are complex biophysically detailed representations of neurons,

which divide neurons into segments or compartments, and employ mathematical equations,

such as the cable equation (Rall, 1962), to describe their biophysical properties. While

multicompartmental models, such as the one developed by Yao et al, faithfully emulate the

behaviour of actual neurons, their complexity presents practical challenges (Izhikevich,

2004).

Particularly when referring to large networks, such complicated models, consisting of many

dynamic parts - with each neuron having hundreds or even thousands of compartments -

are very computationally intensive (Blundell, et al., 2018). Running simulations with models

such as the one developed by Yao et al, necessitate high-performance computing

infrastructure, such as clusters, to complete the simulation within any viable timeframe. This

limits the accessibility of multicompartmental models to the wider research community,

whilst also making it difficult to work with such models on large scales, even with a

sufficiently powerful infrastructure.
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To overcome these limitations, one potential alternative is the development of a simpler

rate-based model that can emulate the model behaviours of the original. Rate-based neuron

models are simplified representations that describe neuron population activity in terms of

firing rates or average activity, rather than modelling individual neurons (Abbott and Chance,

2005). Hence, rate-based models are far less computationally demanding. However, as a

consequence of their high levels of abstraction, such models cannot emulate individual

neurons or even networks as accurately as multicompartmental models.

In this investigation, we develop a lightweight, rate-based variation of the Yao et al

multicompartmental model meant to be less demanding on computational resources and

significantly reducing runtime. We manually adjust and refine an existing rate-based model

of this microcircuit, originally developed by Garcia del Molino et al, 2017, aiming to replicate

simulated data from the multicompartmental model. This model consists of four population

rates, as well as a matrix of connectivity weights. There are also four baseline current

inputs, one to each population, as well as a modulatory current input to the VIP population

(Garcia del Molino, et al., 2017), which was removed when the model was adjusted.

Prior to the investigation, the Yao et al model was faithfully reproduced in the standardised

simulator-independent language NeuroML (Gleeson, et al., 2010; Sinha, et al., 2023;

NeuroML Documentation, 2024), whilst the model developed by Garcia del Molino et al was

reproduced in the domain-independent language LEMS (Cannon, et al., 2014). Both

languages are simulator-independent, mesh well together (LEMS underlies NeuroML2) and

have Python APIs (Vella, et al., 2014), making them easy to work with without sacrificing

performance.

Our version of the Garcia del Molino model has four population rates. We manually fine-tune

each population rate to closely mirror the firing frequency-input current curve relationship

generated by the multicompartmental model. Subsequently, we alter the rate-based

model's connectivity weights to match the connection strengths between the populations in

the multicompartmental model. Finally, we adjust the baseline input currents of the

rate-based model to replicate the behaviour of the complex model, developed by Yao et al,

2020. To assess the accuracy of the adjusted rate-based model in emulating the

multicompartmental model, we simulate baseline activity and population firing rates with

varying levels of reduced SST inhibition, and test how accurately they emulate the spike

rates from the multicompartmental model under the same levels of SST reduction.
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Materials & Methodology

Introduction into Computational Neuroscience

Computational neuroscience is an interdisciplinary field at the intersection of neuroscience,

physics and computational techniques. It involves the theoretical study of the brain, with the

aim of uncovering the principles and mechanisms which underlie brain function through the

use of mathematical models and computational techniques. At its core, computational or

theoretical neuroscience encompasses the analysis and interpretation of experimental data,

as well as the development of mathematical models elucidating the behaviour of neurons

and neural circuitry (Trappenberg, 2022, pp. 3-31).

Through computational methods, researchers can extract insights from diverse

experimental data sources, such as electrophysiological and behavioural studies.

Meanwhile, computational modelling employs mathematical and computational techniques

to simulate and investigate the behaviour and dynamics of neurons and neural networks,

across various levels of complexity (Trappenberg, 2022, pp. 3-31).

By formulating mathematical equations and algorithms that can replicate neuron and

network behaviours, computational models provide a framework for hypothesis testing and

probing studies, whilst not requiring the use of animal studies or human volunteers.

Researchers can use models to simulate the behaviour of neurons, ion channels, synapses

and networks, investigate various aspects of neural processing and explore how activity

patterns emerge and give rise to observed behaviours or disorders (Trappenberg, 2022, pp.

3-31).

In this investigation, we delve into two distinct computational modelling paradigms of vastly

different levels of complexity: highly intricate multicompartmental models; and heavily

abstracted rate-based models.
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Models of the Target Microcircuit

Computational models can be of varying levels of complexity, from simple rate-based and

point-neuron models to very complex biophysically detailed multicompartmental neurons

(Blundell, et al., 2018). Multicompartmental models, such as the one developed by Yao et al

(2022), are complex mathematical representations of neurons, that employ a vast array of

equations to describe biophysical properties of neurons, such as membrane voltage, action

potential, ion conductance, and ion channel densities. A core component of such models is

the division of neurons into compartments, each with its set of differential equations for

these properties. These compartments help form a faithful replica of the actual neuron

morphology and are connected using the cable equation (Rall, 1962), which describes the

propagation of electrical signals across compartments, following the direction of

information flow.

Yao et al developed conductance-based multicompartmental models for each key neuron

type present in the L2/3 microcircuit. Human cellular, synaptic, circuit and gene expression

data (Howard, et al., 2022) were used to develop and optimise the model, with rodent data

being used to supplement any lacking human data. Multi-objective optimisation was

performed, using a mixture of an existing genetic algorithm (Hay, et al., 2011) and the

BluePyOpt Python module (Van Geit, et al., 2016). The models themselves, as well as the

ion channel models used in said models, were developed using the NEURON simulation

environment (Hines, et al., 2020)). Prior to this investigation, the model had been

standardised to the simulator-independent language NeuroML.

We use the rate-based model of the same microcircuit, developed by Garcia del Molino et

al (2017), as the foundation for our rate-based version of Yao et al’s multicompartmental

model. Rate-based neuron models, or rate models, are simplified mathematical

representations of neuron behaviour and dynamics. Rather than being detailed

representations of individual neurons, rate models focus on the average firing rate of entire

neuron populations. This makes them a powerful tool for simulating and studying

large-scale networks of neurons, where modelling individual neurons becomes

computationally expensive (Izhikevich, 2004).
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In rate-based models, neuron populations are represented by population units with one

average firing rate, as opposed to representing each neuron as a series of discrete spiking

events. This of course comes with the assumption that the behaviour of the neuron

populations can be described by their average firing rates. These population dynamics are

usually described by one or mathematical functions.

Garcia del Molino et al's rate-based model is built using experimental data from optogenetic

studies performed in the V1 of behaving mice (Pakan, et al., 2016). Populations have a

different connectivity to the model developed by Yao et al (2022), most likely due to being

built from rodent experiments rather than human studies, as well as the targeted brain

region being different. Average population firing rates are determined by a nonlinear function

of the population's input current, first introduced in Abbott and Chance (2005):

This function involves several parameters, amongst them voltage threshold (Vth), reset

potential (Vr), leak voltage (Vl), leak conductance (gl) and membrane time constant (τ)

(Abbott and Chance, 2005; Garcia del Molino, et al., 2017). Prior to the investigation, the

Garcia del Molino model was converted into LEMS (Cannon, et al., 2014) and NeuroMLlite

JSON format (NeuroML Documentation, 2024).
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NeuroML

Due to working with fundamentally different models, which are implemented using different

simulation tools and computer languages, we decided to convert the models to NeuroML

(Neuronal Markup Language) and LEMS (Low Entropy Model Specification). NeuroML is a

simulation-independent modelling language used for describing complex neuronal models

and simulations. It provides a standardised format for representing the electrophysical and

biophysical properties of neurons and the connectivity of neural network models. Its

greatest advantage is its simulator interoperability (Gleeson, et al., 2010). As a

simulator-independent model description language, NeuroML is compatible with numerous

simulation environments and comes with several tools and libraries that allow easy

conversion from NeuroML to the simulator’s native model description language (NeuroML

Documentation, 2024).

NeuroML models ion channels, neurons, and neural networks using a modular, hierarchical

approach. Ion channel, neuron and network models are each divided into their own

NeuroML code files; neuron and neural network models include their constituent ion

channel and neuron files respectively in the code, in a form of modularisation (Gleeson, et

al., 2010). We are using the latest version of NeuroML, NeuroMLv2/LEMS. LEMS is a

simulator-independent, domain-independent modelling language, which isn’t tied to any

particular domain of biology. LEMS underlies NeuroML code by defining conventional units

and dimensions, the dynamics of ion channels and the structure of neurons in

multicompartmental models, as well as being used in simulation files, which contain the

models to be simulated and the parameters of the simulation (Cannon, et al., 2014;

NeuroML Documentation, 2024).
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NeuroML Framework: Libraries & Tools

NeuroMLv2/LEMS is part of a larger complex of tools and Java and Python libraries and

APIs. Although NeuroML and LEMS are easier for humans to read than other model

description languages due to being XML-based, declarative languages like XML are still

difficult to work with. For this reason, the NeuroML/LEMS schema is wrapped by several

Java and Python libraries and APIs (see Figure 1). The jLEMS library written in Java and

pyLEMS library written in Python provide implementation of LEMS and the LEMS parser,

and can write, load and simulate models. The libNeuroML Python library is a Python API for

reading, writing and validating NeuroML code (Vella, et al., 2014; Sinha, et al., 2023).

The jNeuroML library wraps jLEMS and the NeuroML2/LEMS definitions, whilst providing

additional functionality, such as the conversion from NeuroML to other simulator formats

and running simulation using these simulation environments. It also has a built-in simulation

environment, capable of simulating simple models without compartments. Finally, the

pyNeuroML Python library wraps around jNeuroML, libNeuroML and pyLEMS, whilst

providing additional helper methods (Sinha, et al., 2023; NeuroML Documentation, 2024).

These libraries make it much easier to write, read and work with NeuroML as Python is a

more human friendly language than XML (Vella, et al., 2014). Moreover, they automate the

conversion process from NeuroML to other formats and allow the running of simulations

using many other simulation environments with only Python code.

Figure 1. Python and Java libraries that make up the core NeuroML software stack, cited

from Sinha, et al., 2023.
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All of the above libraries were used at some point during our investigation. Aside from

these, there are other tools and APIs for implementing and developing models written in

NeuroML. In our investigation, we work with NeuroMLlite, a framework that builds on

NeuroML2 and is in active development at the time of this report. NeuroMLlite aims to

provide a high-level specification, written in JSON, that can be used to generate networks in

NeuroML, as well as other formats (NeuroML Documentation, 2024). We use this framework

when adjusting the rate-based model developed by Garcia del Molino et al (2017), as

NeuroMLlite provides a robust GUI that allows us to observe how adjusting model

parameters affects the population rates in real-time.
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NEURON Simulation Environment

We mentioned earlier that the jNeuroML library has a built-in simulation environment

(NeuroML Documentation). However, this environment is very simple and cannot perform

simulations using multicompartmental models, such as the model developed by Yao et al,

2022. Instead, NeuroML is compatible with a diverse array of simulators through simulator

interoperability (Gleeson, et al., 2010; Sinha, et al., 2023). We chose NEURON as our

simulation environment of choice for running the Yao et al model, due to it being a powerful

and versatile simulator, as well as it being the simulator used to develop the Yao et al

model.

NEURON is a widely used tool for simulating the activity and behaviour of neural models. At

its core is the NEURON simulation engine, capable of simulating detailed

multicompartmental models incorporating biophysical properties, such as ion channels,

synapses, and membrane capacitance. The simulation environment allows the construction

of complex models through a hierarchical approach, allowing users to build models by

assembling their basic components, such as compartments and synapses (Hines, et al.,

2020).

Like many other simulators, NEURON has its own model description language based on C:

the Hierarchical Object-Oriented Scripting Language, HOC. Being based on C, HOC is a

performance-focused language, allowing simulations of complex models to be run with

minimal computational resources needed. Moreover, being object-oriented, its code is

modular and reusable. However, it does come with a steep learning curve and a verbose

syntax, making it difficult to work with (Hines, et al., 2009; Hines, et al., 2020).

For this reason, NEURON also provides a Python wrapper library (Hines, et al., 2009), which

makes NEURON much easier to work with. However, HOC is heavily tied to the NEURON

simulation environment, resulting in models written in HOC having limited portability. We

use NeuroML to overcome this problem, as the jNeuroML library can convert NeuroML2

and LEMS code into HOC code and run simulations using NEURON under the hood.
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Results

Yao Et Al Multi-Compartmental Model

Prior to the commencing of this investigation, the multicompartmental model developed by

Yao et al, 2022, and the rate-based model developed by Garcia del Molino et al, 2017, were

converted to NeuroML2/LEMS (Cannon, et al., 2014) and NeuroMLlite (NeuroML

Documentation, 2024) formats respectively. To ensure that the NeuroML versions are faithful

representations of the models, we test the performance of both models compared to their

original formats, using figures and data from the original studies (Yao, et al., 2022; Garcia

del Molino, et al., 2017) as a test metric, in order to confirm that they faithfully mirror the

properties of the originals.

In NeuroML2, models are structured hierarchically, with higher-level elements being made

up of lower-level components, each with its own NeuroML2 description. To test how

faithfully the NeuroML version of the Yao et al model reproduces the properties and

behaviour of the original, we simulate models of single neurons from each population.

These single-cell models have no connections to a greater network, so running simulations

using these models is easier and less computationally demanding.

We use the pyNeuroML library (NeuroML Documentation, 2024) to run simulations on these

single-neuron models using the NEURON simulation environment (Hines, et al., 2020). We

generate voltage traces using 0.1nA stimulus current amplitude for excitatory pyramidal

cells and SST interneurons, and 0.2nA stimulus current amplitude for PV and VIP

interneurons. All frequency-input current curves were generated by applying step currents

of 0.01nA increments within the range of -0.1nA and 0.3nA. All simulations were run at a

temperature of 32⁰C.
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As shown in Figure 2, all generated voltage traces accurately matched the voltage traces

from the original Yao et al study, with PV cells having a high firing rate and pyramidal cells

having a low firing rate compared to SST and VIP cells. Similarly, all generated

frequency-input curves closely match their original counterparts. From this, we concluded

that the NeuroML2/LEMS implementation of the L2/3 multicompartmental model accurately

represents the original model at the level of individual cells. We determined confirming this

to be sufficient for our investigation, as we did not intend to use the fully connected

1000-neuron model in this study.
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Figure 2. NeuroML version faithfully replicates properties of the multicompartmental model

of the human L2/3 cortical microcircuit.

(A) Left: L2/3 pyramidal neuron morphology reconstructed in 2D. Center: Voltage response

of pyramidal cell model to depolarizing and hyperpolarizing step currents. Right: Firing

frequency-input current curve shows relationship between current input and firing rate of

pyramidal cell model. (B, C & D) Same as the above, but for PV, SST and VIP interneuron

models.

All figures were generated using the plot function of the pyNeuroML API (NeuroML

Documentation, 2024)
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Garcia Del Molino Rate-Based Model

We used a rate-based model developed by Garcia del Molino et al (2017) as the foundation

for our rate-based model of the human L2/3 microcircuit. We selected this model because it

represents the same microcircuit and exhibits similar properties and behaviour to the

multicompartmental model. Although the rate-based model was generated using data from

the mouse V1 (Pakan, et al., 2016) rather than the human L2/3, the microcircuit models are

still very similar in cell composition and connectivity. Moreover, the firing rates of the cell

models are already relatively similar. As such, adapting the rate-based model to reproduce

the complex model's behaviour is a relatively simple process.

Before this investigation, the individual cells of the rate-based model were described in

LEMS, while the network was described in NeuroMLlite JSON format. Each population was

derived from a foundational component, which was built on top of the Abbott and Chance

(2005) non-linear function for calculating average population firing rates in rate-based

models. This function has several parameters, which differ between the four rate

populations. Aside from the populations, the model also includes four baseline currents

inputs, one for each population, and a modulatory current input to the VIP population. The

connections between populations are defined by a matrix of connection weights (see figure

3B).

To test if the NeuroMLlite version of the rate-based model replicates the population rates

and other properties of the original model, we simulate the model and compare the

recorded population rates to those generated from the original. Simulations were running

using two different baselines, each with different initial firing rates and baseline current

inputs. NeuroMLlite was used to run simulations using the built-in jNeuroML simulator

(NeuroML Documentation, 2024). We used the jNeuroML simulator because the models are

rate-based and have no compartments, so it is more efficient to use the built-in simulation

environment for such a simple model.
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We found that the generated rate-time graphs matched those of the model in the original

study, replicating several key behaviours such as the disinhibition regime in simulations with

low baseline activity and the response reversal regime in simulations with high baseline

activity, two emerging phenomena on which the study by Garcia del Molino et al (2017)

focuses on. We also observed this from the generated tuning curves, which similarly

matched those generated from the original model. From these results, we concluded that

the NeuroMLlite version of the model faithfully represents the original rate-based model

developed by Garcia del Molino et al, 2017, and as such can be used as a foundation for a

rate-based model that replicates the behaviours of the multicompartmental model

developed by Yao et al, 2020.

Figure 3. NeuroMLlite version faithfully replicates properties of the rate-based model of

mouse V1 microcircuit.

(A) Microcircuit connectivity graph, “1 cell” means one population rate. (B) Signed

connection weight matrix of rate-based model connections. (C) and (D) Transient firing rate

dynamics under onset of modulatory VIP current at 0.005s (left) and population rate tuning

curves (right) reproduced under low baseline (top) and high baseline (bottom) conditions

respectively.

All figures were generated using the GUI provided by NeuroMLlite (NeuroML

Documentation, 2024).
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Rate-Based Model - Population Rate Parameters Adjusted

With both models tested against their original version, we begin adjusting the rate-based

model developed by Garcia del Molino et al (2017) to reproduce the properties and

behaviour of the multicompartmental model. We first remove the VIP modulatory input

current, as there was no such modulatory current in the original study by Yao et al (2022).

As such, removing it would make it impossible to test the performance of the rate-based

model against its multicompartmental equivalent.

Before we adapt the connectivity of the model, the properties of individual rate-based

populations must replicate that of their multicompartmental neuron counterparts. As such,

we temporarily remove all connectivity between the population rates. We do this so that the

firing rate of each population will be caused by the population alone, with no external

influences from the other rate populations. Here, we do not alter the population firing rate

(Abbott and Chance, 2005). Instead, we manually adjusted the parameters of each

population rate, through a process of trial and error, to replicate the properties of individual

multicompartmental cells as closely as possible.

We generate firing rate-baseline current curves and compare them to the firing

frequency-input current curves generated during the aforementioned testing of the

multicompartmental model. The rate-current curves were generated by applying step

currents of 0.01nA increments within the range of -0.1nA and 0.3nA, just as was done for

the complex models. We employ these graphs to iteratively refine the parameters of each

population rate, aiming to replicate the firing rate-input current relationship of the original

neuron models developed in the study by Yao et al, as closely as possible.

This is challenging, as the relationship between firing rate and input current in rate-based

models is linear after the threshold is reached. However, this relationship has far more

complexity in multicompartmental models, making replicating this relationship in rate-based

models difficult. In this model, this is especially the case for the excitatory pyramidal cells,

as illustrated in Figure 4B. Here, we observe a sharp increase in firing rate to 10Hz after

achieving the threshold, followed by a minimal further increase in firing rate. This non-linear

relationship is particularly difficult to model using rate models, hence why the pyramidal

population rate fails to faithfully reproduce the rate-current curve.
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Figure 4. Adjusted population rates emulate firing frequency-input current relationship of

their multicompartmental neuron counterparts

(A) Combined firing frequency-input current curve of the L2/3 multicompartmental model.

(B) Combined firing frequency-input current curve of rate-based version of the L2/3

multicompartmental model. Adjusted SST, PV and VIP interneuron population rates of the

rate-based model successfully emulate the frequency-input relationship of their

multicompartmental counterparts. The pyramidal population rate struggles to emulate the

non-linear frequency-input relationship of multicompartmental pyramidal cell models.

Figures 4A and 4B were generated using the plot function of the pyNeuroML API and the

the GUI provided by NeuroMLlite respectively (NeuroML Documentation, 2024).

Although the behaviour of the multicompartmental cell models wasn't perfectly replicated,

we successfully reproduce the relationship of said cell models between their firing rates and

the input current to a satisfactory extent. Despite some minor deviations, the rate-based

populations effectively emulate the key properties of the multicompartmental cells. Thus,

we conclude that the individual population rates encapsulate the fundamental

characteristics of their multicompartmental counterparts.
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Rate-Based Model - Connectivity Weights Adjusted

With the individual population rates adjusted to match the behaviour of their

multicompartmental counterparts, we next focus on adjusting the higher-level components

of the rate-based model, specifically the baseline currents and the connectivity between

populations. The connectivity weights must be representative of the connection strengths

between the populations in the multicompartmental model. As such, the original

connectivity weight matrix from the model developed by Garcia del Molino et al (2017),

must be replaced by a weight matrix representative of the connection strengths in the

complex model.

Connection strength in the multicompartmental model is complex, with each cell having

multiple projections to other cells, each projection having multiple connections to other

cells, each connection having multiple synapses and each synapse having a different

weight. On top of that, each cell population has multiple cells, with a total of 1000 cells over

the four populations (Yao, et al., 2020). A connection exists when a presynaptic cell projects

to one or more postsynaptic cells. In the end, we measured the strength of each projection

with the following equation: n * w * G / pop, where n is the number of connections in a

projection, w is the average weight per connection, G is the average synaptic conductance

and pop is the postsynaptic population size.

This equation gives us a comprehensive understanding of the strength of each projection

relative to other projections between populations. As such, we use it to construct a

connection weight matrix for the rate-based model. Because the model’s population size

decreases from 1000 neurons in the multicompartmental model to 4 population rates in the

rate-based model, all connection weights in the matrix are reduced by a scale factor of

0.01, as shown in Figure 5B.
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Figure 5. Connectivity weight matrix is adjusted to replicate the connectivity of the

multicompartmental model of the L2/3 microcircuit.

(A) Microcircuit connectivity graph reconstructed from new connectivity matrix.

(B) Signed connection weight matrix constructed using new connection weights.

All figures were generated using the GUI provided by NeuroMLlite (NeuroML

Documentation, 2024).
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Rate-Based Model - Baseline Currents Adjusted

As the core of the network has now been adapted to emulate its multicompartmental

counterpart, we next adjust the baseline current inputs. In neuron and neural network

models, baseline currents model the intrinsic or spontaneous activity of the neurons in the

absence of an external stimulus. They arise from various sources, such as leak channels or

background activity. As such, baseline currents represent the external environment of

neurons, albeit in a simplified manner.

For the behaviour of the rate-based model to emulate that of its multicompartmental

counterpart, this external environment must also be adjusted. As such, we manually adjust

the baseline current inputs to each population, through a methodical process of trial and

error, to reproduce the firing rates generated by the multicompartmental model. We simulate

the rate-based model using the built-in jNeuroML simulator (NeuroML Documentation,

2024), under resting state conditions. We generate the firing rates of all populations in the

rate-based model and compare them to those generated by its multicompartmental

counterpart in the study by Yao et al, 2022. We use these graphs to iteratively refine the

baseline currents, in order to replicate the neuron firing activity displayed by the

multicompartmental model with a high degree of accuracy.

We successfully reproduce the spike rate dynamics of the complex model, as shown in

Figure 6. Notably, all firing rates simulated by the rate-based model fall within ±0.2Hz of the

spike rates recorded in the original study by Yao et al (2022). From this error margin, we

determine that the rate-based model can successfully emulate the firing activity of its

multicompartmental counterpart under standard physiological conditions.
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Figure 6. Adjusted rate-based model successfully replicates population firing rates under

standard, healthy conditions.

(A) Population spiking rates of L2/3 multicompartmental model, cited from Yao, et al., 2022.

(B) Population firing rates of rate-based populations match the spiking rates of their

multicompartmental counterparts within a standard error of ±0.2 Hz.

Figure 6B was generated using the Python API provided by NeuroMLlite (NeuroML

Documentation, 2024).
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Comparison of Models

The rate-based model has been adapted to successfully emulate key behaviours of its

multicompartmental counterpart, namely population firing rates, under regular conditions.

However, its ability to accurately reproduce these behaviours outside of such conditions

must also be tested. Therefore, we employ the rate-based model to replicate data derived

from simulations on the multicompartmental model, under reduced SST interneuron

inhibition.

This method of testing model performance is inherently flawed, as the reduction of SST

inhibition in the study conducted by Yao et al, 2022, consists of both synaptic and tonic

inhibition. Tonic inhibition involves the inhibition of individual neurons, making it harder for

them to reach the action potential threshold, and as such can’t be easily replicated in a

rate-based model, which models entire populations. To overcome this, during our analysis,

we focus on whether the relationship between the firing rates and the level of SST reduction

is preserved, rather than the actual data values being replicated.

Although reproducing tonic inhibition in a rate-based model isn’t practical, we can still

model synaptic inhibition of SST interneurons. We do this by reducing the connection

strengths of projections from the SST population to other populations by 0%, 20%, 40%,

60%, 80% and 100% scale factors. These represent the reduction of SST activity by 100%,

80%, 60%, 40%, 20% and 0% scale factors respectively. Using these scale factors, we

simulate the rate-based model and plot bar charts plotting excitatory pyramidal cell firing

rates under all levels of reduction of SST connectivity strength, as shown in Figure 7A. We

repeat this for SST, PV and VIP interneurons, although only for a 40% reduction of SST

activity (60% reduction of projection strengths).
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Figure 7. Population firing rates of the adjusted rate-based model tested under reduced

levels of SST inhibition.

(A) Pyramidal population firing rate simulated under varied levels of reduction of SST

projection strengths. The linear relationship is successfully replicated, but individual

increases are smaller than expected.

(B) Same as the above, but for SST, PV and VIP population rates, under standard conditions

and 40% reduction of SST projection strengths.

All figures were generated using the Python API provided by NeuroMLlite (NeuroML

Documentation, 2024).

From these graphs, shown in Figure 7, we can identify a clear increase in the firing rates of

all four populations, as an immediate consequence of the reduction of connection strengths

from the SST population. This matches the behaviour of the multicompartmental cell

models (Yao, et al., 2022), although there is less of an increase than expected. Moreover,

the relationship between pyramidal cell firing rates and the reduction of SST projection

strength is mostly linear, accurately emulating the relationship between pyramidal cells and

SST activity reduction in the multicompartmental model (Yao, et al., 2022). Once again

though, the increase in firing rate as SST activity reduction increases, is much smaller than

expected.
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Discussion

In this investigation, using an existing model developed by Garcia del Molino et al (2017) as

a foundation, we developed a rate-based model capable of emulating the key properties

and model behaviours of a multicompartmental model of the human L2/3 cortical

microcircuit, developed by Yao et al (2022). However, the model is not without several

limitations and there are still plenty of areas of improvement.

Overall, the rate-based model has proved capable of replicating neuronal behaviour and

firing rates of the multicompartmental model under normal physiological conditions.

Moreover, it accurately emulates the overall behaviour of its complex counterpart under

abnormal or pathological conditions, such as under the reduction of SST projection

strengths. However, its ability to accurately reproduce data simulated by the model

developed by Yao et al, 2022, outside of a typical physiological environment, remains to be

seen. On top of that, while the model can successfully reproduce the firing rate behaviours

of the entire model, discrepancies arise when it comes to individual populations. As such,

although the model can accurately reproduce the key behaviours of the model, it fails to

reproduce all the nuances of the multicompartmental model in our tests.

From this, we can only partially confirm that our model can accurately emulate its

multicompartmental counterpart, as the results of our investigation are relatively mixed.

Firstly, as mentioned earlier, the individual population rates cannot accurately replicate the

mostly non-linear relationship between the firing rate of neurons and the input current

stimulus that is observed in simulations of individual cells of the multicompartmental model.

This is an inherent problem of the abstract nature of rate-based models, which represent

population firing rates as mathematical equations, in a linear relationship between firing rate

and input current strength. Although this is an expected problem, it does not change that,

although the model can replicate their overall behaviour, it fails to fully emulate certain

nuances of individual neurons of its multicompartmental counterpart. This raises the

following question: have the key properties of individual multicompartmental neurons been

successfully replicated?
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To add to this, there is uncertainty over the overall accuracy of the model. The adapted

connectivity matrix and refined baseline currents allow successful replication of the spike

rates generated by the multicompartmental model under standard conditions. However,

when testing the model’s firing rates under pathological conditions, specifically the

reduction of the inhibitory activity of SST interneurons, the abstract nature of the rate-based

model becomes a problem again. In the study by Yao et al, 2022, the inhibition of SST

activity is the result of synaptic and tonic inhibition of SST interneurons. However, tonic

inhibition is a general inhibition of the biophysical and electrophysiological activity of

individual cells. The rate-model does not include a tonic inhibition to all cell populations,

and so this could only be approximated by the reduction of projection strengths. Although

we mitigate this issue by focusing on reproducing the overall trend between the population

firing rates and the degree of SST activity reduction, this test remains incomplete, as we

remain unsure of the accuracy of the generated spike rate data. As such, we only partially

confirm the accuracy of our model in replicating the key behaviours and properties of its

multicompartmental counterpart.

Aside from the aforementioned issues, there is also uncertainty about the methods used in

fitting the rate-based model, as some of them are relatively crude. This is especially the

case with the adjustment of the baseline currents and parameters of the population rates,

as these were refined manually through a process of trial and error. Although this method

isn’t flawed, it is also not the most optimal option. An alternative would be the use of

machine learning techniques, such as the genetic algorithm used to optimise the individual

multicompartmental neurons in the study by Yao et al, 2022, which would result in a much

more refined, and most likely more precise, set of parameters and baseline currents for the

rate-based model.
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Another relatively crude method used is the scale factor applied to the connection strengths

of the model, to account for the differences in population sizes between the

multicompartmental model (1000 neurons) and its rate-based equivalent (4 population

rates). However, the population sizes are not equal, with the pyramidal neuron population

being far larger in the complex model, and so they do not decrease by the same level. We

use a scale factor of 0.01, which reduces the connection strength by a factor of 100, for the

sake of simplicity. This, however, may mean that the connectivity strengths are inaccurate

and that the baseline currents are potentially overfitted to compensate for this discrepancy.

A potential improvement could involve calculating the ratio of how much each population

decreased in size and utilising it to derive scale factors unique to each population.

Overall, we conclude that there are many limitations with both the methods used and the

model itself. As such, there are plenty of opportunities for improvements and further

refinement of the rate-based model. First of all, the lack of evidence regarding whether or

not the model can replicate the behaviour of its multicompartmental counterpart needs to

be addressed. One way to do this is to replicate, or if that’s not possible mimic, the tonic

inhibition of the SST population. To achieve this, the effect tonic inhibition alone has on the

firing rate of SST cells in the multicompartmental model must be measured and determined.

This can then be reproduced in the rate-based model by either iteratively adjusting the

baseline currents to reproduce the effects of tonic inhibition; or directly reducing the firing

rate of the SST population by the amount of reduction tonic inhibition would cause. The

latter can be done by altering the LEMS code describing the behaviour of the model’s

population rates, as described in the study of Abbott and Chance (2005), to also include a

parameter that reduces the final firing rate by a certain percentage.

A more practical approach would be to simulate, under abnormal or pathological

conditions, the multicompartmental model developed by Yao et al (2022), most likely using

powerful computing infrastructure such as clusters. The complex model would be simulated

with only the projection strength of the SST population reduced. This allows us to test

whether the rate-based model can replicate the data generated by its multicompartmental

counterpart under reduced activity of SST interneurons. Furthermore, this test can be

repeated with different neuron populations, and even by enhancing population activity

rather than reducing it, to gain a more comprehensive understanding of the model’s ability

to replicate the firing activity of its multicompartmental counterpart.
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Both methods can offer valuable insight into our rate-based model’s ability to replicate the

behaviour and properties of the multicompartmental model developed by Yao et al, 2022.

However, they are outside the scope of this investigation.
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Conclusion

To summarise, our investigation leveraged the rate-based model of Garcia del Molino et al,

2017, to develop a rate-based model that can emulate the multicompartmental model of a

human L2/3 microcircuit, developed by Yao et al, 2022. Overall, our model successfully

reproduces the firing rate behaviour of its multicompartmental counterpart under standard

physiological conditions and manages to emulate the general trend of the complex model

firing rate behaviour under reduced SST inhibitory activity, used to assess the model under

pathological conditions. However, the model's capability to accurately emulate the

multicompartmental model's key properties and behaviours under abnormal or pathological

conditions is still unknown. Furthermore, while the model's population rates successfully

replicate the general behaviour of individual multicompartmental neurons, they fail to

accurately emulate all the behaviours and properties of individual neurons, especially the

more nuanced behaviours. Nevertheless, this model is still capable of emulating the overall

behaviour and key properties of the multicompartmental model developed by Yao et al.

Moving forward in the future, this model can be used as an easily accessible and

transparent tool for investigating the behaviour and properties of the human L2/3 cortical

microcircuit, without requiring high-performance computing architecture, such as clusters.

However, it should be noted that using this inherently abstract model for investigating the

behaviour of individual cells or even populations is not recommended. Finally, it’s important

to highlight that rate-based models are on the opposite side of the scale of complexity

compared to multicompartmental models. This means that rate-based models are

inherently in how accurately they can emulate the behaviour of a much more complex

multicompartmental model. Therefore, future efforts could focus on developing a

point-neuron model to reproduce the behaviour of the model developed by Yao et al, 2022.

This is because point-neuron models have greater complexity than rate-based models and

can more accurately reproduce the many properties of multicompartmental models, whilst

still being simpler and computationally less intensive, not requiring powerful computing

infrastructure to simulate (Izhikevich, 2004).
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